
Kotlin	dependency	injection

	

http://xeltuve.com/c3?utm_term=kotlin+dependency+injection


Kotlin	dependency	injection	spring.	Kotlin	dependency	injection	dagger.	Kotlin	dependency	injection	example.	Kotlin	dependency	injection	without	framework.	Kotlin	dependency	injection	hilt.	Kotlin	dependency	injection	constructor.	Kotlin	dependency	injection	framework.	Kotlin	dependency	injection	library.

how	to	inject	dependencies	into	a	class	using	@Inject	annotation	for	micronaut	framework	@Controller("/")	class	HelloController(val	greetService:GreetService){	@Get("/hello")	fun	getMessage(){	greetService.greet	}	}	class	GreetService	(	val	userRepo	:UserRepo){	fun	doSomething(val	data:String){	userRepo.saveData(data)	}	}	class	UserRepo(val
db:DbHandler){	fun	saveData(val	data){	db.save(data)	}	}	as	use	@	Inject	We	can	understand	dependency	injection	using	the	following	example.	Let's	say	a	child	wants	something	from	the	fridge,	so	his	parents	ask	the	child	what	he	needs	and	they	can	bring	it	to	him.	The	parent	does	this	so	that	the	child	does	not	collect	unhealthy	things,	does	not
spoil,	etc.	Let's	say	the	child	wants	to	eat	dinner	and	something	to	drink.	His	parents	bring	him	a	healthy	lunch	with	orange	juice	from	the	fridge.	As	for	Android,	let's	assume	that	each	class	needs	some	objects	to	function.	So	the	class	doesn't	need	to	create	these	objects.	These	objects	will	be	provided	by	the	system	to	the	class	for	it	to	function
properly.	This	simple	concept	is	called	dependency	injection	android.car	â	â	â	â	â	-Engine	In	the	example	above,	you	can	see	that	the	class	of	the	car	depends	on	the	class	of	the	engine	to	run.	So	we	can	say	that	the	class	of	the	car	depends	on	the	class	of	the	engine.	This	example	has	the	following	disadvantages.	To	write	a	unit	test	for	a	car	class	you
need	to	create	an	engine	object	otherwise	it	won't	work.	the	dependent	motor	class	is	coded.	Suppose	a	different	engine	comes	out	in	the	future,	so	integration	will	be	difficult.	Here	the	car	class	controls	the	car	and	also	creates	an	engine	object.	This	is	against	the	Single	Responsibility	Principle.	Let's	say	there	are	constructors'	changes	in	the	engine
class,	so	we	have	to	make	changes	in	the	car	class	as	well.	This	is	not	best	practice,	the	class	of	the	car	should	only	change	when	its	main	function	changes.	When	a	car	class	is	destroyed,	a	part	of	the	engine	is	also	destroyedThus,	the	life	of	the	engine	depends	on	the	vehicle.	In	the	real	world,	it	does	not	happen	that	the	engine	is	in	order,	but	the	car
is	damaged,	and	vice	versa.	We	cannot	reuse	the	engine	object,	it	is	created	locally	and	used	locally.	Therefore,	we	cannot	use	the	engine	object	with	any	other	vehicle	class.	The	system	provided	dependency	counters	in	the	following	way	to	recognize	the	shortcomings	of	a	hard-coded	dependency.	Here	we	are	passing	the	dependency	to	the
constructor,	so	this	is	called	constructor	injection.	Constructor	injection	is	most	often	used	in	large	projects.	We	can	now	test	the	car	class	by	passing	in	any	mock	object	or	implementation	instead	of	the	engine	object.	Suppose	there	is	an	electric	motor	in	the	future,	so	we	can	simply	pass	the	electric	motor	object	to	the	Car	class,	which	will	replace
the	motor	object.	Here,	the	car	class	has	only	one	function	-	to	drive	a	car.	The	engine	object	is	not	created.	The	service	life	of	a	motorcycle	object	does	not	depend	on	the	vehicle	class.	The	system	creates	an	engine	object	elsewhere	and	passes	it	to	the	car	class.	We	can	reuse	the	system	generated	engine	object	with	other	classes.	Here	we	are
passing	the	dependency	in	the	fields,	so	this	is	called	field	injection.	We	need	to	make	sure	you	assign	the	object	to	an	engine	variable	before	we	use	it	so	we	don't	throw	an	error.	By	following	the	principles	of	dependency	injection,	you	are	laying	the	foundation	for	a	good	application	architecture.	Dependency	Injection	gives	you	the	following	benefits:
Code	reusability	Easy	refactoring	Easy	testing	Dependency	Injection	Basics	Before	we	dive	into	specific	Android	dependency	injection,	this	page	provides	a	more	general	overview	of	how	dependency	injection	works.	What	is	dependency	injection?	Classes	often	require	references	to	other	classes.	For	example,	a	car	class	might	need	a	reference
todegree.	These	required	classes	are	called	dependencies,	and	in	this	example	the	car	class	depends	on	the	trigger	of	the	engine	class	instance.	A	class	can	get	the	object	it	needs	in	three	ways:	The	class	creates	the	dependency	it	needs.	In	the	example	above,	the	car	creates	and	initializes	its	own	engine	instance.	Get	it	from	somewhere	else.	Some
Android	APIs,	such	as	context	getters	and	getSystemService(),	work	this	way.	Pass	it	as	a	parameter.	An	application	can	expose	these	dependencies	when	creating	a	class	or	pass	them	to	functions	that	require	individual	dependencies.	In	the	example	above,	the	Car	constructor	receives	an	Engine	parameter.	The	third	option	is	dependency	injection!
With	this	approach,	you	take	the	class	dependencies	and	provide	them	instead	of	downloading	from	the	class	instance.	Here	is	an	example.	Without	dependency	injection,	the	representation	of	a	car	creating	its	own	engine	dependency	looks	like	this:	class	Car	{	private	val	engine	=	Engine()	fun	start()	{	engine.start()	}	}	fun	main(args:	Array)	{	val
auto	=	Auto	(	)	car.start()	}	class	Car	{	private	Motor	motor	=	new	Motor();	public	void	start()	{	engine.start();	}	}	class	MyApplication	{	public	static	void	main(String[]	args)	{	Car	=	new	Car();	auto.start();	}	}	This	is	not	an	example	of	dependency	injection	because	the	car	class	constructs	its	own	engine.	This	can	be	problematic	because:	Car	and
engine	are	tightly	coupled	-	a	car	instance	uses	the	same	engine	type	and	cannot	easily	be	subclassed	or	have	alternative	implementations.	If	the	car	made	its	own	engine,	you	would	have	to	make	two	types	of	cars	instead	of	just	reusing	the	same	car	for	both	gas	and	electric	engines.	High	engine	dependency	makes	testing	difficult.	The	car	uses	a	real
engine	case,	which	avoids	double	testing	to	modify	the	engine	for	different	test	cases.	What	does	the	dependency	injection	code	look	like?Each	Car	instance	that	creates	its	own	Engine	object	after	initialization	receives	an	Engine	object	as	a	parameter	in	its	constructor:	class	Car(private	val	engine:	Engine)	{	fun	start()	{	engine.start()	}	}	fun	main(
args:	Array	)	{	val	engine	=	Motor()	val	car	=	Car(motor)	car.start()	}	class	Car	{private	final	Engine	engine;	public	car	(Engine	engine)	{	this.engine	=	engine;	}	public	void	start()	{	engine.start();	}	}	class	MyApp	{	public	static	void	main(String[]	args)	{	Engine	engine	=	new	Engine();	auto	auto	=	new	car	(engine);	AutoStart();	}	}	The	main	function
uses	Auto.	Because	Car	depends	on	Engine,	the	application	creates	an	instance	of	Engine	and	then	uses	it	to	create	an	instance	of	Car.	Advantages	of	this	DI-based	approach:	Vehicle	reusability.	You	can	switch	to	different	engine-to-car	implementations.	For	example,	you	can	define	a	new	engine	subclass	named	ElectricEngine	for	use	in	Car.	If	you
are	using	DI,	all	you	have	to	do	is	pass	an	instance	of	the	updated	ElectricEngine	subclass	and	Car	will	continue	to	work	without	any	further	modifications.	Simple	vehicle	check.	You	can	go	through	test	pairs	and	try	different	scenarios.	For	example,	you	can	create	a	test	engine	twin	called	FakeEngine	and	customize	it	for	different	tests.	There	are	two
ways	to	inject	dependencies	in	Android:	Constructor	injection.	This	is	the	method	described	above.	You	pass	class	dependencies	to	your	constructor.	Field	injection	(or	setter	injection).	Some	classes	of	the	Android	platform,	e.g.	Things	like	activities	and	fragments	are	generated	by	the	system,	so	no	constructor	injection	is	possible.	The	embed	field	is
used	to	create	dependencies	after	the	class	is	created.	The	code	would	look	like	this:	class	Car	{	latinit	var	engine:	Engine	fun	start()	{	engine.start()	}	}	fun	main(args:	Array)	{	val	car	=	Car()	car.engine	=	Engine()	car.	start()	}	class	Auto	{	private	engine	Engine;	public	void	setEngine(Engine-Engine)	{	this.engine	=	engine;	}	Publicitystart()	{
engine.start();	}	}	class	MyApp	{	public	static	void	main(String[]	args)	{	Car	car	=	new	Car();	car.setEngine(new	Engine());	autostart();	}	}	Note.	Dependency	injection	is	based	on	the	principle	of	inverse	control,	where	shared	code	controls	the	execution	of	specific	code.	Automatic	Dependency	Injection	In	the	previous	example,	you	created,	deployed,
and	managed	dependencies	for	different	classes	yourself	without	relying	on	a	library.	This	is	called	manual	dependency	injection	or	manual	dependency	injection.	The	car	example	only	had	one	dependency,	but	more	dependencies	and	classes	can	make	adding	dependencies	manually	more	tedious.	There	are	also	several	problems	with	manual
dependency	entry.	For	large	applications,	getting	all	the	dependencies	and	including	them	correctly	can	require	a	lot	of	boilerplate	code.	In	a	layered	architecture,	all	the	dependencies	of	the	lower	layers	must	be	provided	to	create	an	object	for	the	upper	layer.	For	example,	to	build	a	real	car,	you	may	need	an	engine,	transmission,	chassis,	and	other
parts.	and	the	engine,	in	turn,	needs	cylinders	and	spark	plugs.	If	you	can't	create	dependencies	before	distributing	them,	such	as	using	lazy	initializers	or	setting	objects	to	application	threads,	you	must	write	and	maintain	your	own	container	(or	dependency	graph)	that	manages	the	runtime	of	your	dependencies.	.	in	mind.	There	are	libraries	that
solve	this	problem	by	automating	the	process	of	creating	and	deploying	dependencies.	They	can	be	divided	into	two	categories:	reflection-based	solutions	that	add	dependencies	at	runtime.	Static	solutions	that	generate	code	for	linking	dependencies	at	compile	time.	Dagger	is	a	popular	Java,	Kotlin	and	Android	dependency	injection	library	maintained
by	Google.	Dagger	makes	it	easy	to	use	DI	in	your	application	by	creating	and	managing	the	dependency	graph	for	you.	It	offers	completely	static	anddependencies	to	solve	many	of	the	design	and	performance	problems	of	thought-based	solutions	like	Guice.	Alternative	to	Dependency	Injection	An	alternative	to	dependency	injection	is	to	use	a	service
locator.	The	service	locator	design	pattern	also	improves	the	separation	of	classes	from	specific	dependencies.	You	create	a	class	known	as	a	service	finder	that	creates	and	stores	dependencies	and	then	provides	those	dependencies	on	demand.	object	ServiceLocator	{	fun	getEngine():	Engine	=	Engine()	}	class	Car	{	private	val	engine	=
ServiceLocator.getEngine()	fun	start()	{	engine.start()	}	}	fun	main(args:	Array)	{	val	car	=	Car	()	car.start()	}	class	ServiceLocator	{	private	static	ServiceLocator	instance	=	null;	private	ServiceLocator()	{}	public	static	ServiceLocator	getInstance()	{	if	(instance	==	null)	{	synchronized(ServiceLocator.class)	{	instance	=	new	ServiceLocator();	}	}
return	instance;	}	public	Engine	getEngine()	{	return	new	Engine();	}	}	class	Car	{	private	Engine	=	ServiceLocator.getInstance().getEngine();	public	void	start()	{	engine.start();	}	}	class	MyApplication	{	public	static	void	main(String[]	args)	{	Car	=	new	Car();	car.start();	}	}	The	service	locator	pattern	differs	from	dependency	injection	in	the	way	it
uses	elements.	Using	the	service	locator	model,	classes	have	the	ability	to	control	and	request	the	input	of	objects;	with	dependency	injection,	the	application	takes	control	and	injects	the	required	objects	ahead	of	time.	Compared	to	Dependency	Injection:	Aggregating	the	dependencies	required	by	the	service	locator	makes	it	difficult	to	test	the	code
because	all	tests	must	interact	with	the	same	global	service	locator.	Dependencies	are	hardcoded	into	the	class	implementation,	not	the	API	surface.	Therefore,	it	is	more	difficult	to	understand	from	the	outside	what	the	class	needs.	As	a	result,	changes	to	the	dependencies	available	in	the	car	or	service	finder	can	cause	runtime	errors	or	tests	that
cause	link	failures.	Lifecycle	Managementit's	harder	if	you	want	to	target	something	other	than	the	lifetime	of	the	whole	application.	Use	Hilt	in	your	android	app.	Hilt	is	Jetpack's	recommended	dependency	injection	library	for	Android.	Hilt	defines	a	standard	way	to	perform	dependency	injection	in	your	application	by	providing	containers	for	every
Android	class	in	your	project	and	automatically	managing	their	life	cycles.	Handle	is	based	on	the	popular	Dagger	DI	library	to	take	advantage	of	the	compilation	correctness,	runtime	performance,	scalability,	and	Android	Studio	support	that	Dagger	offers.	For	more	information	about	the	handle,	see	Dependency	Injection	with	Hilt.	Conclusion
Dependency	injection	gives	your	application	the	following	benefits:	Class	reuse	and	dependency	separation:	It	is	easier	to	replace	dependency	implementations.	Code	reuse	is	improved	through	inversion	of	control,	and	classes	no	longer	have	control	over	the	creation	of	their	dependencies,	but	instead	work	with	any	configuration.	Simple	refactoring:
Dependencies	become	an	auditable	part	of	the	API	surface,	allowing	them	to	be	checked	at	object	creation	or	compile	time,	rather	than	hiding	them	as	implementation	details.	It's	easy	to	check:	the	class	doesn't	manage	its	dependencies.	So	when	testing	them,	you	can	pass	in	different	implementations	and	test	all	your	different	cases.	To	fully
understand	the	benefits	of	dependency	injection,	you	should	try	it	manually	in	your	application,	as	shown	in	Manual	Dependency	Injection.	Additional	Resources	For	more	information	about	dependency	injection,	see	the	following	additional	resources.	samples	samples




