11
P
Q
O
y
x
Triangle
OPQ
above is the solution of the
inequalities
A.
x
–
1
.
0, y + x
.
0, y
–
x
.
0
B.
x
–
1
.
0, y
–
x
.
0, y + x
.
0
C.
x + 1
.
0, y + x
.
0, y
–
x
.
0
D.
y + x
.
0, y
–
x
.
0, x
–
1
.
0
18.
The graphs of the function y = x
2
+ 4 and a
straight line PQ are drawn to solve the
equation x
2
–
3x + 2 = 0. What is the
equation of
PQ
.
A. y = 3x + 4
B. y = 3x
–
2
C. y =
3x + 2
D. y = 3x
–
4
19.
A matrix
P
has an inverse
P
-
1
=
.
.
.
.
.
.
.
.
.
1
0
3
1
.
Find
P.
A.
.
.
.
.
.
.
.
.
.
1
0
3
1
B.
.
.
.
.
.
.
.
.
.
.
1
0
3
1
C.
.
.
.
.
.
.
.
.
1
0
3
1
D.
.
.
.
.
.
.
.
.
.
.
1
0
3
1
20.
The length a person can jump is
inversely
proportional to his weight. If a 20 kg person
can jump 1.5m, find the constant of
proportionality.
A. 20 C. 15 C. 30 D. 60
21.
The sum of the first n terms of an arithmetic
progression is 252. If the first term is
–
16
and the last
term is 72, find the number of
terms in the series.
A. 9 B. 8. C. 7 D. 6
22.
Factorize completely
4abx
–
2axy
–
12b
2
x+6bxy.
A.
2x(2b
–
a)(3b
–
y)
B. 2x(a
–
3b)(2b
–
y)
C. 2x(3b
–
a) (2b
–
y)
D. 2x(a
–
3b)(y
–
2b)
23.
P
R
Q
S
In the diagram above
PQ
is parallel to
RS
.
What is the value of
.
+
.
+
.
.
A. 180
o
B. 90
o
C. 360
o
D. 200
o
24.
XYZ
is a circle centre
O
and radius 7cm. Find
the area of the shaded region.
A. 38 cm
2
B. 14 cm
2
C. 77 cm
2
D. 84 cm
2
.
.
.
.
.
.
.
7
22
.
25.
A trapezium has two parallel sides of
lengths 5cm and 9cm. If the area is 21cm
2
,
find the distance
between the parallel sides.
A. 4 cm
B. 7 cm
C. 3 cm
D. 6 cm
26.
Find the equation of the locus of a point
P
(x, y) which is equidistant from
Q
(0, 0)
and
R
(2, 1)
A. 2x + y = 5
B. 4x + 2y = 5
C. 4x
–
2y = 5
D. 2x + 2y = 5
27.
Find the value of
p,
if the line which passes
through (
-
1,
-
p) and (
-
2p, 2) is parallel to the
line 2y + 8x
–
17 = 0.
A.
7
6
B.
7
2
.
C.
7
6
.
D.
6
7
.
.
.